International Journal of Applied Research

Journal HP: www.intjar.com, ISSN: 2411-6610

Morphological characterization of Foxtail millet germplasm

Iftekhar Ahmed^{1*}, Md. Rezwan Molla¹, Md. Motiar Rohman² and Md. Amjad Hossain³

¹Plant Genetic Resources Centre, Bangladesh Agricultural Research Institute, Joydebpur, Gazipur-1701, Bangladesh ²Plant Breeding Division, Bangladesh Agricultural Research Institute, Joydebpur, Gazipur-1701, Bangladesh ³Training and Communication Wing, Bangladesh Agricultural Research Institute, Joydebpur, Gazipur-1701, Bangladesh

ARTICLE INFO

Article history

Accepted 11 May 2017 Online release 16 May 2017

Keyword

Setaria italica Variability Qualitative characters Quantitative characters Germplasm

*Corresponding Author

Name: Iftekhar Ahmed E-mail: ifti.bari@gmail.com

ABSTRACT

Variability was studied among 246 foxtail millet [Setaria italica (L.) P.Beauv.] germplasm collected from different research stations and traditional farming villages of the Bangladesh. The collected genotypes were evaluated in the field at the Plant Genetic Resources Centre (PGRC), Bangladesh Agricultural Research Institute (BARI), Gazipur during winter 2013-2014 and 2014-2015. Qualitative variations were found in plant characters, leaf characters, inflorescence characters and seed characters. Erect and erect geniculate growth habit with non-pigmented, pigmented and deep purple plant was also exhibit among the accessions. Short Inflorescence lobes were present in maximum number of accessions followed by long lobes but no inflorescence lobes and large and thick inflorescence lobe was present in five and one accession respectively. Based on lobes compactness, medium was highest followed by loose, compact and spongy inflorescence lobe. Cylindrical, pyramidal, ovate to elliptic and ovate shaped with green and purple coloured inflorescence was present among the accessions. The majority of seed colour were white (58.1%), followed by black (13.4%) and others. Quantitative variations were observed among the accessions. Days to 50% flowering and days to mature seed harvest were 76 to 120 days and 116 to 157 days after sowing, respectively. Numbers of tiller per plant - ranged from 1 to 5.7. The highest coefficient of variation was found in number of tiller per plant (39.93 %) followed by peduncle length (35.59%). Days to seed harvest and days to 50% flowering showed the lowest (6.23% and 9.75%, respectively) coefficient of variation. The genotypes were grouped into ten clusters. The highest inter-cluster distance was observed between clusters VI and VII. Therefore, the genotypes belonging these clusters could be selected for future hybridization program.

Introduction

Small millets are the hardiest crops, belong to family Poaceae and include an estimated 8000 species belonging to some 600 genera. Among them, eight small seeded species are used as food crops in different countries globally. These include finger millet, foxtail millet, prosomillet, little millet, barnyard millet,kodo millet, teff and fonio millet. Foxtail millet is taken as a significant cereal since old times and has important role in development of human civilization in Asia and Europe (Li et al., 1996; Lu et al., 2009). Also, constituting the richness of different amino acids and nutritional minerals taken as food, it exhibits high photosynthetic efficiency and drought tolerance (Dai et al., 2008; Dai et al., 2011a). Their use as food, feed and fodder make them important for food security. Their grains are rich sources of calcium, iron, zinc, beta-carotene, and high quality proteins, contributing significantly in reducing malnutrition that affects nearly half of the world's population, particularly in developing countries of Africa and Asia (Gowda et al., 2002).

Foxtail millet has long been an important crop of the indigenous community. India ranks first in worldwide foxtail millet cultivation while Bangladesh ranks 46. Bangladesh has produced only 12 thousand tons foxtail millet from 38 thousand hectare of land in 2012

(FAOSTAT, 2013). In Bangladesh due to its greater drought tolerance and shorter growth period, only the indigenous people cultivated foxtail millet instead of rice. The ancient indigenous people cultivated it for various purposes, including for use in festivals and marriages. The stover serves as quality fodder for cattle. Foxtail millet has lost its importance as a food crop in competition with major cereals such as wheat, rice, maize and sorghum. Its short crop cycle and wide range of soil adaptability, it may remain a useful crop in Asia on poor agricultural land in regions with low rainfall or a short growing season. Plant genetic resources centre, BARI constitutes a rich and diverse collection of millet genotypes from different location of Bangladesh.

Assessment and utilization of genetic variability is very essential. The study of genetic diversity and genetic relatedness is necessary for crop improvement and in developing appropriate strategies for the conservation, exploitation and utilization of foxtail millet accession (Upadhya & Joshi, 2003). Understanding the pattern of diversity and the genetic structure of gene pools is critical for effective management and use of germplasm resources. Progress in plant breeding depends on identification of new sources of genetic variation for beneficial traits. Therefore, the experiment was conducted to characterize foxtail millet germplasm conserved at Plant genetic resources center, BARI. Through identification of salient features, the promising accessions would be recommended to the growers.

Materials and Methods

Experimental site

The genotypes were evaluated in two consecutive years during winter, 2013-2014 and 2014-2015 at the PGRC, BARI Gazipur.

Plant materials

A number of foxtail millet germplasm were collected from government farms, markets and farm households from long period of time in PGRC, BARI. A total of 246 landraces were collected from different parts of Bangladesh. Special attention was given regarding variability among the accessions during collection so that we collect the different types of genotypes and covered total gene pool.

Experimental design

The field trials were in a randomized complete block design with two replications. Each accession was grown in four rows plot. Plot size was $3 \text{ m} \times 1.5 \text{ m}$. Seeds are sowing in a row maintaining distance 15 cm.

Cultural practices

BARI-recommended cultural practices were followed (Mondal et al., 2011). Irrigation was given at tillering, flowering and grain filling stage for ensuring proper growth and development of the crop. Weeding was also done as when required. Crop was reasonably free from any disease or insect damage and no chemical sprays were applied. Crop field was surrounded by repellents strip to protect the birds. Crops were harvested at their different maturity dates.

Data recording

Ten plants per replication were randomly chosen for biometric measurements. Plant data were measured by visual observation as a combination of active growth and plants appearing to be healthy and strong. All qualitative characters/traits were measured by a team following IBPGR (International Board for Plant Genetic Resources) descriptors for *Setaria italica* (IBPGR, 1985). Scoring of agro-morphological characters was done according to the procedures given in the descriptor. Quantitative data measurements were averaged from 10 randomly selected plants.

Statistical analysis

The data were analyzed using Genstat software (version 12.1.)

Descriptor list for foxtail millet

Growth habit: 1= Erect and 2= Erect geniculate, (Measured at vegetative stage)

Plant pigmentation: 0= Not pigmented (green), 3= Pigmented, and 7= Deep purple (Measured at vegetative stage)

Blade pubescence: 1= Essentially glabrous (Measured at vegetative stage)

Sheath pubescence: 1= Essentially glabrous (Measured at vegetative stage)

Ligule pubescence: 1= Essentially glabrous, 5 Medium pubescent and 9 Strongly pubescent (Measured at vegetative stage)

Degree of lodging at maturity: 1= Very slight, 2 = Medium (Ripening stage)

Senescence: 1= Actively growing (Ripening stage)

Inflorescence lobes: 0= Absent, 3= Short and 7= Long (At fully developed inflorescence)

Lobe compactness: 3= Loose, 5= Medium, 7= Compact, and 9= Spongy (At fully developed inflorescence)

Inflorescence bristles: 3= Short but obvious, 5= Medium, 7= Long and 9= Carrying a spikelet (At fully developed inflorescence)

Compactness of inflorescence: 3= Open 5= Medium, and 7= Compact (At fully developed inflorescence)

Spikelet arrangement: 3= Arranged around axis (At fully developed inflorescence)

Inflorescence colour: 1= Green, 2= Purple, and 3= Black (At fully developed inflorescence just before maturity)

Inflorescence shape: 1= Cylindrical, 3= Pyramidal, 5= Globose to elliptic, and 7= Obovate (At fully developed inflorescence)

Seed colour: 1= White, 3= Orange, 5= Black, and 7= Yellow (After threshing of seed)

Results and Discussions

Qualitative descriptor

a) Plant growth traits

Characterization of the gualitative traits revealed a wide variation among the accession (Table 1). The accessions varied considerably for growth habit and highest accessions showed erect type (229 accessions) but only seventeen accessions showed little different from erect. i.e. erect geniculate. Based on plant pigmentation, accessions were classified into three classes: Non pigmented or green, pigmented and deep purple. The majority were green (95.5%), followed by pigmented (4.1%), and deep purple (0.40%). About 93.9% accessions' leaf colour had green but the rest had pigmented among the accessions (Table 1). According to Reddy et al. (2006), among the 1535 foxtail millet germplasm of the ICRISAT petancheru genebank, plant and leaf colour in majority accession was green (74.6%) followed by pigmented and deep purple. Similarly plant growth habit was erect in maximum accession

than decumbent, erect geniculate and prostate. No variation was observed in blade pubescence, sheath pubescence and senescence. Very slight (205 accessions) to medium (41 accession) lodging occurred among the accessions.

b) Inflorescence characters

Inflorescence characters showed great variation the collected foxtail millet accessions (Table 1). Based on Inflorescence lobes- short Inflorescence lobes were present in maximum number (160) of the accessions followed by long lobes (80 accessions) but no inflorescence lobes and large and thick inflorescence lobe was present in five and one accession respectively. Inflorescence bristle were categorized into four groups- medium s inflorescence bristles were the highest (97 accessions) followed by short but obvious (65 accessions) and long (59 accessions). However very short (24 accessions) and carrying spikelet (1 accession) inflorescence bristle also exists among the accessions. Based on lobes compactness, accessions were classified into four classes: loose, medium, compact and spongy. Medium compact lobe was highest (122 accessions) followed by loose inflorescence lobes (68 accessions) but compact (50 accessions) and spongy lobes (6 accessions) also appeared under the studied germplasm. Inflorescence compactness were medium in 126 accessions followed by open (76 accessions) while compact inflorescence also found among the accessions (44 accessions).

Spikelet arrangements were around the axis in all accessions. Maximum number of accessions (192 and 190) showed green coloured and cylindrical shape inflorescence followed by purple colour with pyramidal shape inflorescence (33 and 44 accessions, respectively), but globose to elliptic shape (6 accessions) and obovate shape (6 accessions) were also found among the foxtail millet germplasm. We observed wide variations of seed colors. Based on seed color, accessions were classified into five classes: white, orange, yellow, light yellow and black. The majority of seed colour were white (58.10%), followed by black (13.4%), yellow (12.6%), orange (11.8%) and light yellow (4.1%). Reddy et al., (2006) stated that, among the ICRISAT foxtail millet germplasm, majority of the accessions had long bristles, followed by medium bristles and short bristles. Of the three types of lobe compactness, compact lobes were predominant (64.4%), followed by medium (32.8%). Also observed a wide range of grain colors from black, combination of black and white, dark grey, light grey, red to yellow. Most of the studied traits both qualitative and quantitative were showed extensive variability among accessions is probably attributed to the genetic differences and also due to the environment from which they were

collected (Krishnamurthy et al., 2014). Qualitative character's of individual accessions' has given in Table S1.

Quantitative descriptor

Range, mean, standard deviation and coefficient of variations were shown in Table 2. Days to 50 % flowering and days to mature seed harvest were 76 to 120 days and 116 to 157 days after sowing, respectively. Longer grain filing period is a desirable combination that the breeders are interested to find but the accessions that matured late might have experienced heat stress during grain filling and therefore suffered from yield loss. On an average, leaf blade length, leaf blade width and leaf sheath length were 38.9 cm, 2.4 cm and 14.7 cm, respectively. Plant height reached from 66.5 to 155.0 cm. Peduncle length was 4.3 to 34.8 cm and average inflorescence length was 19.2 cm among the accessions. Number of tiller per plant ranged from 1 to 5.7. The highest coefficient of variation was found in number of tiller/ plant (39.93%) followed by peduncle length (35.59%) and coefficient of variation in inflorescence length were also high (23.64%). Days to seed harvest and days to 50% flowering showed the lowest (6.23% and 9.75%) coefficient of variation. Considering the above characteristics some of accessions (BD-862, BD-867, BD-901, BD-940, BD-950, BD-951, BD-1067 and BD-1094) has been shown batter performance.

Principal component analysis (PCA)

Multivariate analysis of the accessions revealed that the first three Principal Components (PC1 to PC 3) gave eigen- values > 1 and cumulatively accounted for 70.3% of the total variation (Table 3). The first PC axes accounted for 32.9% of the total multivariate variation, while the second accounted for 23.0% and the third for 14.4%. The cumulative proportion of the variation reached 70.3% in the first three PC axes and 81.6% in the first four axes. The high degree of variation in first three PC axes indicates a high degree of variation of these characters. Though there are no guidelines to determine the significance or importance of a coefficient, which is eigen-vactor (Duzyaman, 2005). However higher coefficients for a certain trait indicate the relatedness of the trait to respective PC axes (Sneath & Sokal, 1973). Characters with high coefficients in the PC1 to PC3 should be considered as more important since these axes explain more than half of the total variation. The variation in PC1 was mainly associated with plant height and numbers of tiller per plant, in PC2 with leaf blade length, leaf sheath length, peduncle length and in PC3 inflorescence length.

Name of descriptor	Descriptor state	No. of accession (s)	Frequency (%)
Growth habit	Erect	229	93.1
	Erect geneculate	17	6.9
Plant pigmentation	Not pigmented	235	95.5
	Deep purple	1	0.4
	Pigmented	10	4.1
Leaf colour	Green	231	93.9
	Pigmented	15	6.1
Blade pubescence	Essentially glabrous	246	100
Sheath pubescence	Essentially glabrous	246	100
Degree of lodging at maturity	Very slight	205	83.3
	Medium	41	16.7
Senescence	Actively growing	246	100
Inflorescence lobes	Absent	5	2.0
	Short	160	65.0
	Long	80	32.6
	Large and thick	1	0.4
Inflorescence bristles	Very short	24	9.8
	Short but obvious	65	26.4
	Medium	97	39.4
	Long	59	24.0
	Carrying spikelet	1	0.4
Lobes compactness	Loose	68	27.7
	Medium	122	49.6
	Compact	50	20.3
	Spongy	6	2.4
Inflorescence compactness	Open	76	30.9
•	Medium	126	51.2
	Compact	44	17.9
Inflorescences colour	Green	192	78.0
	Purple	33	13.4
	Black	21	8.6
Inflorescences shape	Cylindrical	190	77.2
	Pyramidal	44	18.0
	Globose to Elliptic	6	2.4
	Obovate	6	2.4
Seed colour	White	143	58.1
	Orange	29	11.8
	Yellow	31	12.6
	Light yellow	10	4.1
	Black	33	13.4

Table 1. Qualitative variation of different descriptors in foxtail millet accessions

Table 2. Quantitative variation of different descriptors in foxtail millet accessions

Descriptors	Range	Mean	Sd	CV (%)
Plant height (cm)	66.5 -155.0	115.6	19.99	17.30
Leaf blade length (cm)	24.0 - 51.0	38.9	5.44	13.97
Leaf blade width (cm)	1.80 - 4.0	2.4	0.37	15.45
Leaf sheath length (cm)	11.0 - 20.	14.7	1.82	12.40
Inflorescence length (cm)	6.0 - 30.4	19.2	4.55	23.64
Peduncle length(cm)	4.3 - 34.8	17.7	6.29	35.59
Number of tiller per plant	1.0 - 5.7	3.0	1.19	39.93
Day to 50% flowering	76 - 120	98.0	9.56	9.75
Days to seed harvest	116 - 157	135.0	8.41	6.23

	PC 1	PC 2	PC 3	PC 4
Eigen value	2.302	1.607	1.005	0.793
Explained proportion of variation (%)	32.9	23.0	14.4	11.3
Cumulative proportion of variation (%)	32.9	55.9	70.3	81.6
Variables	Eigen- vectors	5		
Plant height (cm)	0.97976	-0.10191	-0.15918	0.06581
Leaf blade length (cm)	0.01722	-0.69662	0.65449	0.23846
Leaf blade width(cm)	0.0127	-0.01071	0.01836	0.0027
Leaf sheath length (cm)	0.10854	-0.14232	0.09907	0.01062
Numbers of tiller per plant (no.)	0.98792	-0.06833	-0.0814	-0.00411
Peduncle length (cm)	0.15977	-0.69229	-0.64536	-0.25829
Inflorescence length (cm)	0.11778	0.00495	0.3362	-0.9337

 Table 3. Extraction of eigen vectors, eigen values, percent of variation and cumulative variations for principal components of foxtail millet accessions

PCA analysis indicate that plant height, number of tiller plant, leaf blade length, leaf sheath length, peduncle length and inflorescence length were among the most important descriptors which accounted for more than 70% of the phenotypic variation expressed in this germplasm collection. These descriptors were therefore found to be most useful for studying the variability of the population. It is suggested that the use of these characters will save considerable amount of time for identification of foxtail millet germplasm. Successful breeding of high yielding varieties depends on the yield contributing morphological traits and choosing small number of important traits having positive correlation. Flag leaf area, plant height, peduncle length and number of tillers per plant are an important morphological yield contributing traits that are positively correlated with yield per plant (Khalig et al., 2008). The present study also suggested that high yielding accessions of foxtail millet may be selected by indirect selection of plant height, leaf blade length, leaf sheath length, peduncle length, inflorescence length, and number of tiller plant character containing accessions.

Cluster analysis

Hierarchical clustering of the 246 foxtail millet germplasm based on quantitative characters was carried out. A dendrogram using all clusters in vertical orientation was determined using between groups linkage measured in squared Euclidean distance (Fig. 1a and 1b). The population was grouped in ten major clusters (Table 4). Cluster V was the largest with sixty seven accessions followed by sixty two accessions in cluster IV and fifty two accessions in cluster I. cluster II, cluster III, cluster VII and cluster VIII consisted of seven, twenty seven, seventeen and three accessions, respectively. Remaining clusters (cluster VI, cluster IX and cluster X) was found with only two accessions each.

Canonical variate analysis (CVA) was done to compute the inter-cluster distances (Table 6). The highest inter-cluster distance was observed between clusters VI and VII (17.44), followed by the distance between clusters II and VII (15.63), V and VI (13.91). In contrast, the lowest inter-cluster distance was observed between cluster IV and IX (1.34), followed by cluster I and IX (1.86). However, the maximum inter-cluster distance was observed between the clusters clusters VI and VII (17.44) indicating that genotypes from these two clusters, if involved in hybridization, may produce a wide spectrum of segregating population (Dhillon et al., 1999). It is assumed that maximum amount of heterosis will be manifested in cross combination involving the genotypes belonging to most divergent clusters. According to the cluster means, Cluster VII showed better performance in case of number of tiller plant, peduncle length and inflorescence length (Table 5). Thus indicates that genotype of this cluster could be used for parent in future hybridization program for higher seed vield.

Cluster No.	Cluster m	ember							
Cluster I	BD-860 BD-908 BD-947 BD-1000 BD-1053 BD-1100	BD-871 BD-916 BD-950 BD-1004 BD-1059 BD-1191	BD-875 BD-924 BD-952 BD-1005 BD-1065 BD-1208	BD-876 BD-926 BD-953 BD-1008 BD-1067 BD-1221	BD-878 BD-928 BD-955 BD-1020 BD-1074 BD-1225	BD-886 BD-931 BD-956 BD-1021 BD-1088 BD-1262	BD-888 BD-940 BD-961 BD-1022 BD-1095 IA-48	BD-892 BD-942 BD-967 BD-1035 BD-1098	BD-904 BD-945 BD-984 BD-1044 BD-1099
Cluster II	BD-862	BD-897	BD-898	BD-929	BD-934	BD-1045	BD-1101		
Cluster III	BD-867 BD-927 BD-951 BD-1230	BD-881 BD-930 BD-959	BD-890 BD-932 BD-1019	BD-891 BD-935 BD-1028	BD-893 BD-936 BD-1033	BD-900 BD-943 BD-1049	BD-901 BD-944 BD-1057	BD-903 BD-948 BD-1077	BD-905 BD-949 BD-1094
Cluster IV	BD-877 BD-941 BD-1161 BD-1217 BD-1246 BD-1283 BD-1327	BD-879 BD-1016 BD-1168 BD-1234 BD-1248 BD-1287 BD-1330	BD-885 BD-1063 BD-1176 BD-1238 BD-1257 BD-1290 AM-21	BD-887 BD-1066 BD-1188 BD-1239 BD-1259 BD-1293 NIR-89	BD-910 BD-1068 BD-1189 BD-1240 BD-1263 BD-1310 AIR-04	BD-911 BD-1093 BD-1196 BD-1242 BD-1267 BD-1313 IA-27	BD-913 BD-1150 BD-1198 BD-1243 BD-1268 BD-1314 IA-30	BD-921 BD-1154 BD-1207 BD-1244 BD-1269 BD-1317 RAI-59	BD-938 BD-1158 BD-1209 BD-1245 BD-1276 BD-1325
Cluster V	BD-880 BD-1143 BD-1200 BD-1241 BD-1277 BD-1294 BD-1324 AM-02	BD-1007 BD-1144 BD-1202 BD-1251 BD-1278 BD-1295 BD-1328 AM-23	BD-1012 BD-1157 BD-1206 BD-1252 BD-1279 BD-1301 RISA-36 AM-54	BD-1114 BD-1165 BD-1214 BD-1254 BD-1280 BD-1305 RISA-42 IA-57	BD-1115 BD-1167 BD-1220 BD-1255 BD-1281 BD-1306 RISA-77	BD-1116 BD-1169 BD-1222 BD-1258 BD-1284 BD-1309 RISA-87	BD-1127 BD-1171 BD-1227 BD-1264 BD-1285 BD-1311 AI-52	BD-1134 BD-1179 BD-1235 BD-1270 BD-1286 BD-1312 AI-53	BD-1142 BD-1194 BD-1237 BD-1273 BD-1289 BD-1321 Al-54
Cluster VI	BD-899	BD-1032							
Cluster VII	BD-1105 BD-1275	BD-1129 BD-1288	BD-1130 BD-1291	BD-1213 BD-1296	BD-1215 RISA-92	BD-1216 RISA-123	BD-1249 Al-10	BD-1271 KASI-61	BD-1272
Cluster VIII	BD-1219	BD-1292	AR-33						
Cluster IX	BD-1229	BD-1307							
Cluster X	BD-1231	BD-1261							

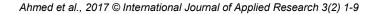

Table 4. Number of cluster and genotypes under each cluster of foxtail millet accessions

Table 5. Cluster means for 7 quantitative characters in 246 foxtail millet accessions

Parameters	CI-I	CI-II	CI-III	CI-IV	CI-V	CI-VI	CI-VII	CI-VIII	CI-IX	CI-X
Plant height (cm)	160.93	145.54	132.3	126.3	113.47	116.37	103.38	115.82	80.83	93.85
Leaflet length (cm)	36.22	40.84	41.42	36.54	42.93	30.74	40.41	40.83	39.14	36.22
Leaflet width (cm)	2.38	2.44	2.38	2.36	2.63	2.23	2.42	2.49	2.44	2.35
Leaf sheath length	14.67	14.78	15.43	14.58	14.98	13.17	15.01	14.83	14.42	14.29
Numbers of tiller/ plant	2.44	2.31	2.02	2.39	2.52	3.02	4.02	3.32	3.15	3.41
Peduncle length (cm)	14.37	12.6	11.93	12.11	12.57	16.3	24	21.49	17.74	22.91
Inflorescence length (cm)	22.03	23.78	17.48	18.78	20.91	19.23	24.36	16.85	16.31	16.85

Table 6. Inter cluster distances of ten clusters from 246 foxtail millet accessions

Cluster number	1			IV	V	VI	VII	VIII	IX	Х
	0									
11	6.32	0								
	3.45	2.86	0							
IV	3.17	9.19	6.41	0						
V	6.10	12.18	9.39	2.98	0					
VI	8.21	2.00	4.79	10.95	13.91	0				
VII	9.36	15.63	12.79	6.50	3.69	17.44	0			
VIII	6.01	11.22	8.70	3.16	2.78	12.70	6.10	0		
IX	1.86	7.88	5.07	1.34	4.32	9.67	7.77	4.2	0	
Х	4.23	8.36	6.06	3.07	5.01	9.74	8.68	3.01	3.03	0

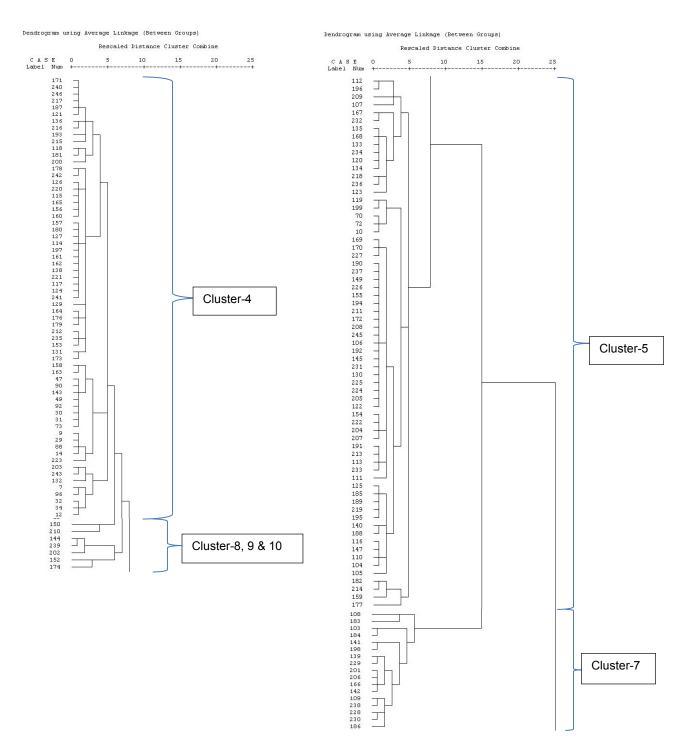
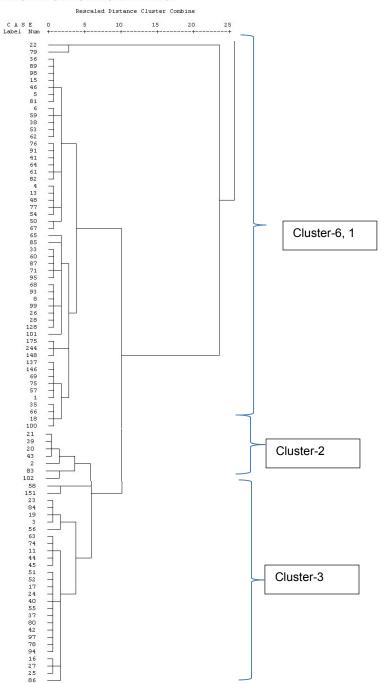



Figure 1a. Dendogram showing position of cluster of the 246 foxtail millet accessions

Dendrogram using Average Linkage (Between Groups)

Figure 1b. Dendogram showing position of cluster of the 246 foxtail millet accessions

Conclusion

Study on 246 foxtail millet accessions exhibit variations considering both the qualitative and quantitative characters. Qualitative characters like growth habit, plant pigmentation, inflorescence colour, inflorescence shape and compactness and seed colour were differ from each other among the accessions. Plant height, number of tiller per plant, inflorescence length, peduncle length, leaf blade length and leaf blade width also express variation among the accessions. Days to 50% flowering and days to harvest also different from one to another. This variability can be used in varietal improvement of foxtail millet. Phenotypic variation of the foxtail millet accessions was found to be related to the diverse geographic origins.

References

- Dai, H. P., Feng, B. L., Gao, J. F., Gao, X. L., Wang, P. K., & Chai, Y. (2008). Senescence and activate oxygen metabolism of leaf in *Panicum miliaceum* L. Agr. Res. Arid Area 26, 1, 217-220.
- Dai H. P, Jia, G. L., Lu, C., Wei, A. Z., Feng, B. L. & Zhang, S. Q. (2011a). Studies of synergism between root system and leaves senescence in Broomcorn millet (*Panicum miliaceum* L.). J. Food Agric. Environ. 9, 2, 177-180.
- Dhillon, S. S., Singh, K., & Brar, K. S. (1999). Diversity analysis of highly selected genotypes in Indian mustard (*Brassica juncea*). 10th Int. Rapeseed Congress, Canberra, Australia. p. 435.
- Duzyaman, E. (2005). Phenotypic diversity within a collection of distinct Okra (*Abelmoschus esculentus*) cultivars derived from Turkish landraces. *Genet. Resour.Crop Evol.* 52, 1019-1030.

- FAOSTAT. (2013). http://www.factfish.com/statisticcountry/bangladesh/millet
- Gowda, L., Upadhyaya, H. D., Reddy, V. G., & Singh, S. (2002). Diversity in small millets germplasm and enhancing its use in crop improvement. Intl. Crops Res. Inst. for the Semi-Arid Tropics (ICRISAT), Patancheru PO, 502324, AP, India. Pp. 56-65.
- IBPGR. (1985). Descriptors for *Setaria italica* and *S. Pumila*. IBPGR Secretariat: Rome, Italy.
- Khaliq, I., Irshad, A., & Arshad, M. (2008). Awn and flag leaf contribution towards grains yield in spring wheat (*Triticum sativum* L.). Cereal Res. Comm. 36, 1, 65-76. DOI: 10.1556/CRC.36.2008.1.7
- Krishnamurthy L, Upadhyaya, H. D., Gowda, C. L. L., Kashiwagi, J., Purushothaman, R., Singh, S., & Vadez, V. (2014). Large variation for salinity tolerance in the core collection of foxtail millet (*Setaria italica* (L.) P. Beauv.) germplasm. *Crop Pasture Sci.* 65, 353–361.
- Li, Y., & Wu, S. Z. (1996). Traditional maintenance and multiplication of foxtail millet (*Setaria italica* (L.) P. Beauv.) landraces in China. *Euphytica*. 87, 33-38.
- Lu H., Zhang, J., Liu, K. B., Wu, N., Li, Y., Zhou, K., Ye, M., Zhang, T., Zhang, H., & Yang, X. (2009). Earliest domestication of common millet (*Panicum miliaceum*) in East Asia extended to 10,000 years ago. *Proc. Natl. Acad. Sci.* USA. 106, 18, 7367-7372.
- Mondal, M. R. I., Islam, M. S., Bhuiyan, M. A. J., Rahman, M. M., Alam, M. S., & Rahman, M. H. H. (2011). Krishi Projucti Hatboi (5th edition). Bangladesh Agricultural Research Institute,Gazipur-1701.
- Reddy, V.G., Upadhyaya, H. D., & Gowda, C. L. L. (2006). Characterization of world's foxtail fillet germplasm collections for morphological traits. SAT eJournal/ ejournal. icrisat.org. 2, 1, 1-4.
- Sneath, & Sokal. (1973). Numerical taxonomy. W.H Freeman and Company, Sanfrancisco.
- Upadhyay, M. P., & Joshi, B. K. (2003). Plant genetic resources in SAARC countries: Their conservation and management. Nepal chapter. SAARC Agriculture Information Center. pp. 297-422.