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This study examines the pattern of the number of rainy days in monsoon season and 
various time series methods used for detection of trend and forecast the future. Rainfall 
data was collected from Dhaka rainfall recording station from the periods 1973-2008.  
Monsoon period was considered because of the importance of rainfall affecting the crop 
production. The traditional classical decomposition method and Box-Jenkins methods were 
carried out to detect trend and forecast of future value. Time varying method was used for 
detection of trend and forecast future value to get the better estimated value than the 
traditional methods. Besides most appropriate state-space representation of the model 
were used for analyzing the data. This study reveals that in the classical decomposition 
method the predicted value of the log of the number rainy days rise slightly. It does not 
follow the same pattern as the original value. On the other hand the predicted value 
provides the similar pattern of the original data in the Box-Jenkins methods. Again the 
predicted value in the state-space representation methods follows the same pattern of the 
original data value. The predicted value which is obtained by state space representation is 
very similar to the original data value. For that state-space representation of the model 
gives better result in time series analysis for forecasting. In the time varying method the 
predicted values give the better result because its values are much closer to the original 
data set than the traditional time series model. It overcomes the limitations of the constant 
slope coefficient and makes the series stationary.  It is revealed from the study that the 
numbers of rainy days are decreasing over time in the monsoon. This work will be helpful 
for further study of the spatial rainfall distribution over the country by considering all rainfall 
recording station of the country. 
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Introduction 
 

Agriculture plays a vital role in the economies of 
Bangladesh. The contribution of agriculture in GDP 
is considerable.  The agricultural sector of the 
country always depends on climatic conditions. 
Rainfall is most important natural factor that has 
significant contribution to agriculture production 
variability (Green, 1964). If the amount of rainfall 
decrease and the monsoon does not come in the 
proper time then its consequences will decrease the 
amount of agricultural production in the country. If 
the agricultural production decreases then it will 
affect the GDP of the country. It was, therefore, felt 
essential to construct a more rational model for 
detection of trend of rainy days in monsoon. 
 
For estimating trend and forecast the series 
classical method and the popular Box-Jenkins 
methods were applied (Box & Jenkins, 1976). State-
space approach was applied for estimating trend 
and forecasting the series to overcome the 
limitations of these two methods (Brockwell & 
Davis, 1996). In time series analysis the trend may 
be estimated or eliminated through the classical 
decomposition model where smoothing is 
performed to predict future events. In spite of some 
limitations Box-Jenkins approach was also used to 
forecast the time series data. Box–Jenkins methods 
for time series analysis are popular and widely 
applied. This approach is based on autoregressive 
integrated moving average (ARIMA) models. 
  

In practice, some non-stationary features in the time 
series are present due to trend and/or seasonal 
effects. As a first step, the observed time series is 
transformed into a stationary series using time and 
lag functions. In practice, the trend and/or seasonal 
are removed from the series by differencing. A non-
stationary random walk it can be turned into a 
random (stationary) process by taking the first 
differences (Hamilton, 1989). Despite the 
relationships between ARIMA and unobserved 
components time series models, the Box–Jenkins 
and state space approaches to time series analysis 
are distinct. In the state-space approach the non-
stationary time series in terms of trend and 
seasonal components are explicitly modeled. In the 
Box–Jenkins approach, trend and seasonal effects 
are treated as nuisance parameters. These effects 
are removed from the series before any analysis 
can begin. As a result, state space methods provide 
an explicit structural framework for the 
decomposition of time series in order to diagnose all 
the dynamics in the time series data 
simultaneously. The Box–Jenkins methods are 
concerned with the short-term dynamics only and 
are therefore primarily concerned with forecasting 
only. 
 
A successful application of ARIMA models requires 
the (differenced) time series to be stationary. 
However, as Durbin & Koopman (2001) pointed out: 
In the economic and social fields, real series are 
never stationary however much differencing is 
done. The investigator has to face the question, 
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how close to stationary is close enough? This is a 
hard question to answer.’ In state space methods, 
stationary of the time series is not required. 
Furthermore, missing data, time-varying regression 
coefficients and multivariate extensions are easily 
handled in the state space framework. This 
handling is relatively difficult in a pure ARIMA 
modeling context. 
 
But studies on to assess the pattern of the number 
of rainy days in a month in monsoon season are 
scant. With these ends in view, the present study 
has been undertaken to detect the trend of the 
rainfall of the number of rainy days in monsoon and 
compare the state space representation of the 
model with the traditional decomposition method 
and Box-Jenkins method. 
 

Methodology 
 
Sources of data 
 

This study is conducted of the rainfall of the Dhaka 
station taking the duration 1973-2008 on account. 
The monthly and daily data of rainfall for Dhaka 
station over 1973-2008 are collected from the 
meteorological department of Bangladesh. The 
secondary data were collected from meteorological 
department which is on monthly rainfall in monsoon 
over the period 1973-2008.  
 
Description of variables 
 

Meteorological department stores data on a sheet 
or computer’s hard disc where the data are 

arranged in rows, which contain 12 months and 
columns, which contains 31 days. For the 
comprehension of the study, the data were sorted to 
get a single column. Then the daily data from 
January 1

st
 1973 to 31

st
 December 2008 were 

arranged on a single column. Similarly the monthly 
data from January 1973 to December 2008 were 
also arranged on a single column for each variable, 
the monthly counts of rainy days in monsoon. 
 
Statistical software used  
 

There are different kinds of statistical software 
which can be used to perform the analysis. The 
available statistical software which can be for the 
analysis is as follows: Eviews-3.1, MINITAB, R, 
Gauss, SPSS, S-plus and Microsoft Excel etc. In 
this Eviews-3.1 was used because it has both 
windows and syntax option and finally it is very easy 
to handle. Microsoft Excel, SAS and SPSS were 
also used. 
 
The traditional time series modeling approach such 
as classical decomposition methods and Box-
Jenkins methods were used for analyzing the data. 
But both the two approach have some problems. 
For this reasons state-apace representation of the 
time series was applied to estimate trend and 
forecasting time series because it is very easy to 
estimate and forecasting in relative to the other two 
traditional time series modeling. Time varying 
method was also used for detection of trend and 
forecast future value to get the better estimated 
value than the traditional methods (Cooley & 
Prescott, 1973). 

 

Results and Discussion 

Estimation of trend in the absence of seasonality by classical decomposition method 
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Fig. 1. Line graph of the log of the number of rainy days. 
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Fig. 2. Line graph of the random component of the fitted model. 

Figure 1 reveals that the log of the number of rainy 
days shows almost no trend. It also reflects that the 
log of the number of rainy days have almost no 
changes over time. 
 
In the absence of seasonal component the model 
becomes 

, 1,......t t tX m Y t n  
, Where tm

 is the trend 

component and tY
 is the random noise 

components. We can estimate trend component by 
polynomial fitting (Duncan & Horn, 1972) i.e.  

0 1tm a a t 
, Where 0a

 intercept and 1a
 is the 

slope. 
For my research the model is  

0 1ln( )NRD a a t 
(Harvey, 1989), Where NRD 

stands for the number of rainy days 
Thus the fitted model is 

ln( ) 2.911 0.00056NRD t 
 

 

Above plot of the random noise components of the 
log of the number of rainy days reveals that there is 
no systematic pattern (Fig. 2). So from the 
decomposition part of the log of the number of rainy 
days the number of rainy days in the future years in 
monsoon season is predicted. 
 
Prediction by using classical method 
 

The predicted value of the number of rainy days in 
monsoon in the next year monsoon season is as 
follows:  
 
Table1. Predicted value by using classical method 
(Gersch & Kitagawa, 1983). 
 

Name of the month Lrd Predicted value 

June-2009 2.992392158 19.93331 
July-2009 2.992955598 19.94454 
August-2009 2.993519038 19.95578 
September-2009 2.994082478 19.96703 

 

Table 1 show the number of rainy days was 
increased very slowly from one month to another in 
the monsoon season. 

 

Predicred Value of the Log of Rainy Days

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120 127 134 141 148

Time

lr
d

 
 

Fig. 3. Line graph of the predicted value by using classical method. where lrd stands for the log of the number of 

rainy days.  
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Estimation of ARIMA Model 

A time series plot of the log of the number of rainy 
days (Fig. 4), it is clear that there exists almost no 
trend and the data shows no specific pattern. Hence 
the original series is nearly stationary but not so 
smoothly the data are stationary. A plot of the 
sample autocorrelation function, ACF and the 
sample partial autocorrelation function, PACF is 
shown in another figure 5 below. The graph of ACF 

of the series displays no specific pattern in the size 
of ACF values which is typical pattern of stationary 
series. But to ensure the series is stationary it was 
checked by using different kinds of diagnostic 
checking. From the above plot (Fig. 4) it is shown 
that there is almost no trend which is close to 
stationary but not so smoothly stationary and there 
is no seasonality in the data. Fig. 5 of the sample 
ACF and PACF reveals that the data follows 
typically pattern of stationary time series. 
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Fig. 4. Log of the number of rainy days, where lrd stands for the log of the number of rainy days. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5. Sample ACF and PACF of the log of the number of rainy days. 

 
Unit Root Test 
 

At the formal level, stationary can be checked by 
finding out if the time series contains a unit root. 
The Dickey-Fuller (DF) and Augmented Dickey-
Fuller (ADF), tests can be used for this purpose 
(Dickey & Filler, 1979). 
 

The actual procedure of implementing the DF tests 
involves the null and alternative hypothesis as 
follows 

0 : 0H  
 means there is a unit root that is the 

time series is non-stationary. 

1 : 0H  
 means there is no unit root that is the 

time series is stationary. 
 
Decision rule 
 

If the calculated value is greater than the critical 
value, the null hypothesis of the unit root is rejected 
i.e. the series is stationary, otherwise the null 
hypothesis of the unit root is accepted that is the 
series is non-stationary.   
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Table 2. ADF unit root test of the log of the number of 
rainy days. 
 

ADF Test 
Statistic 

-13.20083 
1%   Critical Value* -4.0245 
5%   Critical Value -3.4417 
10% Critical Value -3.1452 

 

Table 2 depicts that the original time series data of 
the log of the number of rainy days is not smoothly 
stationary. In order to further smooth the fluctuation 
existing in the data the original data is differenced to 
get the stationary series. Since the modulus of the 

calculated value is greater than the critical value, 
the hypothesis of there is no unit root in the series is 
rejected. It presents that the original series is 
stationary. But if the first difference is taken, the 
series pattern shows more appropriately stationary.   
The Fig. 6, is the plot of the first difference of the 
original series. The first difference shows that the 
data shows completely no systematic pattern which 
shows completely random pattern. It reveals that 
the data of the first difference of the log of the 
number of rainy days is stationary.    
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Fig. 6. Line graph after taking the first difference of the original series. 

 
 

Fig. 7. Correlogram of the sample ACF and PACF of taking the first difference.  

 
Table 3. ADF unit root test of the log of the number of 
rainy days 
 

ADF Test 
Statistic 

-20.30503 
    1%   Critical Value* -3.4773 
    5%   Critical Value -2.8818 
    10% Critical Value -2.5774 

 

Table 3 describes that the first difference of the 
original time series data at lag 1 is stationary i.e. the 
time series of the log of the number of rainy days is 
stationary and we modeled a stationary ARIMA 
model. Thus we will stop further test. Now we will 
identify the tentative model for the transformed 
series by inspection of ACF and PACF. It is obvious 
from the sample ACF of the differenced series the 
most dominating spike at lag 1 is outstanding. On 
the other hand, the spike at lag 1, 2 and 3 are 
statistically significant for PACF. 
 
Now we consider the difference types of tentative 
model as much as possible from which we select 
the best model using the model selection criteria. 

Since the characteristics of a good ARIMA model is 
parsimonious ignoring the higher order of p and q, 
the tentative model on the basis of model selection 
criterion are as follows: 
 
Table 4. Comparison of different ARIMA model. 
 

Model AIC 2R  Adjusted 
2R  

ARIMA(1,1,1) -0.277 0.537 0.53 
ARIMA(0,1,1) -0.282 0.542 0.539 
ARIMA(1,1,0) 0.21 0.23 0.23 
ARIMA(2,1,2) 0.32 0.16 0.156 

 
From the above Table 4, we see that for the model 

ARIMA (0, 1, 1) has smaller AIC and 
2R and 

adjusted 
2R  are high than the other model. So the 

model ARIMA (0, 1, and 1) is the best tentative 
model and we can also use this model for our 
foresting purpose.  
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Prediction by Using ARIMA Model  
 

The ultimate application of ARIMA model is to 
forecast future value of a time series. The 
forecasting of the tentative ARIMA model is used 
when the finite number of past observations is 
available. The forecasted value of the ARIMA (0, 1, 
1) model are as follows:  
 
Table 5. Estimated value by using ARIMA model. 
 

Name of the 
predicated month 

lrd 
Predicted value of the 
number of rainy days  

June-2009 2.8832 18 
July-2009 2.9740 20 
August-2009 3.0292 21 
September-2009 2.7510 16 

 

Table 5 illustrates that the number of rainy days in 
monsoon follows the same pattern as the original 
value. It is clear that the number of rainy days 
decreasing as the time passes in relative to the 
original value.  
 
From the Fig. 8, the one step predictors of the log of 
the number of rainy days for ARIMA model in the 
above figure together with the actual data. For this 
model, the predictors follow the movement of the 
original data quite well but the predicted value is 
small in relative to the original data.  
 
 
 
 

Prediction of Log of Rainy Days
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Fig. 8. One step prediction for the log of the number of rainy days. 

 
State-space representation of the model 

 
The trend model with deterministic level and 
stochastic slope coefficient are as follows 

t t ty v   
, 

2~ (0, )twhere NID  
 

1t t tv v   

, 

2~ (0, )twhere nid  
, where 

ty
 represent the log of the number of rainy days. 

The estimated component of the state-space 
representation (Durbin & Koopman, 1992) of the 
model is as follows: 
 
At convergence the value of the log-likelihood 
function equal -30.48063. The maximum likelihood 
estimates of the variance of the irregular 

components are

2ˆ 0.018469 
, and the 

maximum likelihood estimate of the state 

disturbance variance is

2 7ˆ 4.83E


. The 

estimated value of the level 
ˆ 2.61 

and the final 
estimated value of the slope component 

are ˆ .00241v  . The state variance of the slope 
component is almost zero, meaning that the value 
of the slope hardly chance over time 
 
The below Fig. 9, contains the separate 
development of the slope over time. At initial stage 
the change of the slope over time is considerable 
but after few periods it is clear that the slope is 
effectively constant. This is consistent with the 
close-to-zero disturbance variance for this 
component.  
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Fig. 9. Slope of stochastic linear Trend model. 

 
The predicted value of the number of rainy days in the state space representation  
 

If we plot the predicted value of the log of the number of rainy days then we get the graph as follows   
 

Prediction of Log of Rainy Days
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Fig 10. Predicted value of the log the number of rainy days. 

 
Table 6. Predicted value by using state apace 
representation. 
 

Name of the 
predicted month 

lrd 
Predicted value of the 
number of rainy days 

June-2009 2.93335 19 
July-2009 3.044642 21 
August-2009 3.099804 22 
Septerber-2009 2.966828 19 

 

The one step prediction of the log of the number of 
rainy days in the above Figure 10 together with the 
actual data. For this model, the predictors follow the 
same movement of the original data quite well. 
From the above analysis it can be concluded that 
the predicted value of the log of the number rainy 
days in the classical decomposition method are 
very slowly increasing which are contradict the 
original data pattern. In the original data the values 
are not always increasing. The original data in the 
monsoon mostly follows that the first month it has 
small value then the next month it increase then the 
next month it decrease and then in the last month in 
the monsoon it decrease. But the predicted value in 
the classical method does not follow the same 
pattern as the original value. On the other hand the 
predicted value of the log of the number rainy days 
in the Box-Jenkins method follows the same pattern 
of the original data and provides a good predicted 

value. But the predicted value is relatively small 
than the original value. Again the predicted value of 
the log of the number rainy days in the state-space 
representation methods follows the same pattern of 
the original data value. The predicted value which is 
obtained by state space representation is very 
similar to the original data value. For that state-
space representation of the model gives better 
result in time series analysis for forecasting.    
 

Conclusion 
 
The analysis of rainfall behavior is important to the 
water resource management as well as agricultural 
department. The predictions of rainy days in 
monsoon contribute to the proper policy 
implementation in the agricultural fields. For this 
purpose this study was undertaken considering 
variable number of rainy days in monsoon per 
month.  To detect trend and forecast future value 
several time series methods are available. The 
traditional time series methods are classical 
decomposition method and Box-Jenkins method. 
But both the methods have some limitations. In the 
classical method the observations of the dependent 

variables ty
 and the independent variable time t  

are assumed independent but in time series 
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analysis they are interrelated. Again in the classical 
method the slope coefficient is always constant 
value but in time series analysis it should not be a 
constant value. On the other hand in the Box-
Jenkins method a successful application requires 
the time series to be stationary. Again Box-Jenkins 
method concerned with the short term dynamic only 
and is therefore primarily concerned for forecasting. 
To overcome the above limitations of the traditional 
time series methods, time varying method is used. 
Because in time varying method the slope 
coefficients vary over time and the series need not 
to be stationary for detection of trend and 
forecasting future value. 
 
From the analysis of the data it is clear that in the 
classical method the predicted value increases over 
time very slowly which contradict with the original 
data pattern. The line graph of the predicted value 
does not follow the preceding pattern of the graph. 
In the Box-Jenkins method the predicted values 
provides the similar pattern of the original data. The 
line graph of the predicted values also shows a 
reasonable similar pattern of the original data series 
of the number of rainy days in monsoon. But in the 
time varying method the predicted values give the 
better result because its values are much closer to 
the original data set than the Box-Jenkins method 
and the classical decomposition method. The line 
graph of the predicted values also suggests a better 
result provides by the time varying method than the 
traditional time series method. Because time 
varying method overcomes the limitations of the 
constant slope coefficient and make the series 
stationary. It can be concluded from the analysis 
that the numbers of rainy days are decreasing over 
time in the monsoon.   

References 
 
Box, G. E. P. and Jenkins, G. M. (1976), Time Series 

Analysis: Forecasting and Control, Revised Edition, 
Holden-Day, San Francisco. 

Brockwell, P. J. and Davis, R. A. (1996), Introduction to 
Time Series and Forecasting, Springer-Verlog, New 
York.   

Cooley, T. F., and Prescott, E. C. (1973), “Varying 
Regression : A Theory and Some Application,” 
Annals of Economic and Social Measurement, 2, 
463-473 

Dickey, D. A. and Filler, W. A. (1979), Distributions of the 
estimators for autoregressive time series with unit 
root, J. Amer. Stat. Assoc., 74, 427-431. 

Duncan, D. B., and Horn, S. D. (1972), “Linear Dynamic 
Regression Estimation From the Viewpoint of 
Regression Analysis,” Journal of the American 
Statistical Association, 67, 845-821. 

Durbin, J. and S. J. Koopman (2001). Time Series 
Analysis by State Space Methods. Number 24 in 
Oxford Statistical Science Series. Oxford: Oxford 
University Press. 

Durbin, J., & Koopman S. J. (1992) Filtering, smoothing 
and estimation for time series models when the 
observations come from exponential family 
distributions, London School of Economics and 
Political Science, London. Unpublished. 

Gersch, W. and Kitagawa, G. (1983) The prediction of 
time series with trend and seasonalities. J. Bus. 
Econ. Statist., 1, 253-264. 

Green, J. R. (1964) “A Model for Rainfall Occurrence”, 
Journal of Royal Statistical Society, Vol. 29, pp. 155-
156. 

Hamilton, J. (1989). A new approach to the economic 
analysis of nonstationary time series and the 
business cycle. Econimetrica 57, 357-84. 

Harvey, A. C. (1989) Forecasting, Structural Time Series 
Models and the Kalman Filter. Cambridge: 
Cambridge University Press. 

 

 

 

 

 


	Time varying model for detection of trend in time series data of monthly count of rainy days in monsoon

